Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest.
نویسندگان
چکیده
In this study we have cloned the chick Hoxa-2 gene and analysed its expression during early development. We find that Hoxa-2 has a rostral limit of expression in the rhombencephalic neural tube corresponding precisely to the boundary between rhombomeres (r)1 and 2; a limit further rostral than any other Hox gene reported to date. Neural crest migrates from r2 to populate the first branchial arch, yet although Hoxa-2 is expressed down the full dorsoventral extent of r2 during the phase of neural crest emigration, there is no Hoxa-2 expression in either the emergent neural crest or in the first branchial arch. Conversely, at the level of r4, both the neural tube and the neural crest cells, which migrate out of this rhombomere to populate the second branchial arch, express Hoxa-2. Other Hox genes expressed in the rhombencephalic neural tube demonstrate a transfer of expression from neural tube to neural crest at all axial levels of expression. Hoxa-2 is thus unusual in demonstrating separate anterior expression limits in neural tube and neural crest; this allowed us to test whether Hox gene expression patterns in neural crest are determined by migratory pathways or are prespecified by the site of origin in the neuroepithelium. Grafting experiments in which pairs of rhombomeres were transplanted to ectopic sites at the time of rhombomere boundary formation reveal a prepatterning of the neural crest with respect to Hoxa-2 expression. The decision to down-regulate Hoxa-2 expression in r2-derived neural crest, but to maintain Hoxa-2 expression in r4-derived neural crest is intrinsic to the premigratory crest cell population. Thus, following grafting of r4 to the r2 site and vice-versa, Hoxa-2 expression is maintained in r4-derived neural crest, but lost in r2-derived neural crest.
منابع مشابه
Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa-3 in the avian embryo.
We have investigated the pattern and regulation of Hoxa3 expression in the hindbrain and associated neural crest cells in the chick embryo, using whole mount in situ hybridization in conjunction with DiI labeling of neural crest cells and microsurgical manipulations. Hoxa3 is expressed in the neural plate and later in the neural tube with a rostral border of expression corresponding to the boun...
متن کاملEven-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain.
Neural crest cells originate at three discontinuous levels along the rostrocaudal axis of the chick rhombencephalon, centred on rhombomeres 1 and 2, 4 and 6, respectively. These are separated by the odd-numbered rhombomeres r3 and r5 which are depleted of migratory neural crest cells. Here we show elevated levels of apoptosis in the dorsal midline of r3 and r5, immediately following the formati...
متن کاملRhombomere rotation reveals that multiple mechanisms contribute to the segmental pattern of hindbrain neural crest migration.
Hindbrain neural crest cells adjacent to rhombomeres 2 (r2), r4 and r6 migrate in a segmental pattern, toward the first, second and third branchial arches, respectively. Although all rhombomeres generate neural crest cells, those arising from r3 and r5 deviate rostrally and caudally (J. Sechrist, G. Serbedzija, T. Scherson, S. Fraser and M. Bronner-Fraser (1993) Development 118, 691-703). We ha...
متن کاملVitamin A-deficient quail embryos have half a hindbrain and other neural defects
BACKGROUND Retinoic acid (RA) is a morphogenetically active signalling molecule thought to be involved in the development of severely embryonic systems (based on its effect when applied in excess and the fact that it can be detected endogenously in embryos). Here, we adopt a novel approach and use the vitamin A-deficient (A-) quail embryo to ask what defects these embryos show when they develop...
متن کاملDorsal hindbrain ablation results in rerouting of neural crest migration and changes in gene expression, but normal hyoid development.
Our previous studies have shown that hindbrain neural tube cells can regulate to form neural crest cells for a limited time after neural fold removal (Scherson, T., Serbedzija, G., Fraser, S. E. and Bronner-Fraser, M. (1993). Development 188, 1049-1061; Sechrist, J., Nieto, M. A., Zamanian, R. T. and Bronner-Fraser, M. (1995). Development 121, 4103-4115). In the present study, we ablated the do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 120 4 شماره
صفحات -
تاریخ انتشار 1994